Physics Formula Sheet

Online BMAT Course

Electricity

$$Voltage(V) = \frac{Work done (J)}{Charge (C)}$$

 $Current (A) = \frac{Charge (C)}{Time (s)}$

Voltage = Current x Resistance

Resistance in Series: $R_{Total} = R_1 + R_2$

Resistance in Parallel: $\frac{1}{R \text{ Total}} = \frac{1}{R1} + \frac{1}{R2}$

Transformer Equation: $\frac{\text{number of turns in primary coil (Np)}}{\text{number of turns in secondary coil (Ns)}} = \frac{\text{voltage in primary coil (Vp)}}{\text{voltage in secondary coil (Vs)}}$

Power = voltage x current

Energy transfer = power x time

Motion and Energy

Speed =
$$\frac{\text{distance}}{\text{time}}$$
 (m s⁻¹)

 $\label{eq:acceleration} \mbox{Acceleration} = \frac{\mbox{change in velocity}}{\mbox{time}} = \frac{\mbox{Δv}}{\mbox{Δt}} \, (\mbox{m s^{-2}})$

Momentum = mass x velocity

Force = mass x acceleration

Force (N) = $\frac{\text{change in momentum (kg m/s)}}{\text{change in time (s)}}$

Work done (J) = force (N) x distance (m)

Power (W) = $\frac{\text{energy } (J)}{\text{time } (s)}$

Kinetic energy $=\frac{1}{2}x$ mass x velocity2

Potential energy = mass x acceleration due to gravity x height

Physics Formula Sheet

Online BMAT Course

Thermal Physics

 $Density = \frac{Mass}{Volume}$

Energy = mass x specific heat capacity x change in temperature = $mc\Delta T$

Percentage efficiency = $\frac{\text{useful output}}{\text{total input}} \ge 100$

Waves

Time period = $\frac{1}{\text{Frequency}}$

Velocity = frequency x wavelength = $f \lambda$

Angle of incidence = angle of reflection