Physics Formula Sheet

Electricity

Voltage $(\mathrm{V})=\frac{\text { Work done (J) }}{\text { Charge (C) }}$
Current (A) $=\frac{\text { Charge }(\mathrm{C})}{\text { Time }(\mathrm{s})}$
Voltage $=$ Current x Resistance

Resistance in Series: $R_{\text {Total }}=R_{1}+R_{2}$
Resistance in Parallel: $\frac{1}{\mathrm{R} \text { Total }}=\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{R} 2}$

Transformer Equation: $\frac{\text { number of turns in primary coil (} \mathrm{Np} \text {) }}{\text { number of turns in secondary coil (} \mathrm{Ns} \text {) }}=\frac{\text { voltage in primary coil (} \mathrm{Vp} \text {) }}{\text { voltage in secondary coil (} \mathrm{Vs} \text {) }}$
Power = voltage x current

Energy transfer = power x time

Motion and Energy

Speed $=\frac{\text { distance }}{\text { time }}\left(\mathrm{m} \mathrm{s}^{-1}\right)$

Acceleration $=\frac{\text { change in velocity }}{\text { time }}=\frac{\Delta v}{\Delta t}\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$

Momentum = mass x velocity

Force $=$ mass x acceleration

Force $(N)=\frac{\text { change in momentum }(\mathrm{kg} \mathrm{m} / \mathrm{s})}{\text { change in time }(\mathrm{s})}$

Work done $(\mathrm{J})=$ force $(\mathrm{N}) \times$ distance (m)

Power (W) $=\frac{\text { energy }(\mathrm{J})}{\text { time }(\mathrm{s})}$
Kinetic energy $=\frac{1}{2} \mathrm{x}$ mass x velocity 2

Potential energy $=$ mass x acceleration due to gravity x height

Physics Formula Sheet

Online BMAT Course

Thermal Physics

Density $=\frac{\text { Mass }}{\text { Volume }}$

Energy $=$ mass x specific heat capacity x change in temperature $=m c \Delta T$

Percentage efficiency $=\frac{\text { useful output }}{\text { total input }} \times 100$

Waves

Time period $=\frac{1}{\text { Frequency }}$

Velocity $=$ frequency x wavelength $=f \lambda$
Angle of incidence = angle of reflection

